Programme Outcomes- M.Sc.

After the completion of two year post-graduation program students will be able to acquire the following attributes.

PO 1	Domain Knowledge - Acquire advanced knowledge of in distillery scientific principles, theories, models and methods in the disciplines of their study.
PO 2	Application - Able to use scientific knowledge and tools deriving from domain knowledge alcohol production and sugar manufacturing .
PO 3	Problem Analysis - Able to identify, formulate and analyze complex problems and find out working solutions using scientific knowledge and tools distillery and sugar industry.
PO 4	Project Management - Able to handle individual and/or group tasks and use critical thinking, problem solving and research-related skills distillery and sugar industry.
PO 5	Individual and Team work - Able to function effectively as an individual and as a member in diverse teams and in multidisciplinary settings distillery and sugar industry.
PO 6	Communication Skills - Able to communicate effectively with the surrounding people and society at large and write reports, documents and make effective presentations distillery and sugar industry.
PO 7	Social Awareness - Able to demonstrate social values through acts of social commitment, display professional ethics and responsibilities showing appropriate consideration for public health, safety and welfare distillery and sugar industry.
PO 8	Social Awareness - Able to demonstrate social values through acts of social commitment, display professional ethics and responsibilities showing appropriate consideration for public health, safety and welfare distillery and sugar industry.
PO 9	Ethics and Human Values- Able to acquire human values and integrity of character and display moral behaviour distillery and sugar industry.
PO 10	Lifelong Learning - Able to recognize the need for and have the ability to engage in an independent and life-long learning in the context of drastic technological changes.

Programme Outcomes- B.Sc.

After the completion of three year graduation, students will be able to acquire the following attributes.

PO 1	Domain Knowledge - Acquire knowledge of fundamentals, models, basic scientific principles and methodsin sugar industry.
PO 2	Application- Able to apply fundamentals, techniques, skills and tools of sciences in new contexts sugar industry.
PO 3	Analysis - Able to analyse problems scientifically and find solutions sugar industry.
PO 4	Project Management - Able to undertake projects/tasks, plan and implement effectively sugar industry.
PO 5	Individual and Team Work- Able to work both as an individual and together with people of different socio-cultural backgrounds sugar industry.
PO 6	Communication Skills- Able to use proper communication skills for successful interaction in personal and public life sugar industry.
PO 7	Social Awareness - Able to undertake activities informed by social values (such as social equity), social issues and cultural diversity sugar industry.
PO 8	Environment and Sustainability - Develop consciousness to preserve the earth's finite resources and balance human needs and the environment sugar industry.
PO 9	Ethics and Human Values- Apply ethical principles and appreciate the importance of ethical practices in professional life and uphold human dignity sugar industry.
PO 10	Lifelong Learning - Able to acquire emerging knowledge and skills and adapt to the changing needs of the times sugar industry.

SCIENCE

M.Sc. Alcohol Programme Specific Outcomes

After the completion of the two year postgraduate programme in Agrochemicals and Pest Management, students will be able to ----.

PSO 1	Learn about Alcohol Production and Sugar Manufacturing and sugar structure, chemical names and physical and chemical properties.
PSO 2	Gain knowledge aboutsoilformation, soil profile, soil properties and composition. Suagrproperties, alcohol properties.
PSO 3	Understand general characteristics, morphology and physiologymicroorganism, plant virus and viral diseases, disease management and control.
PSO	4 Acquire knowledge of production of Alcohol and Sugar , marketing and planning.
PSO 5	Understand the concept of ecology and interrelationship among

M.Sc. Alcohol Programme Specific Outcomes

M.Sc.I Semester-I Paper I- Alcohol Technology I

At the end of the course, students will be able to	
CO 1	Understand chemical Properties of alcohol
CO 2	Learn alcohol structure chemical names and physical and chemical properties.
CO 3	Acquire knowledge of alcohol formulations.
CO 4	Acquire skill of using different devices which are used in alcohol application.
CO 5	Get knowledge about recent advances in ethanol plantation

Paper II Semester I Microbiology

At the en	At the end of the course, students will be able to	
CO 1	Understand types microorganism.	
CO 2	Learn bacterial structure structure chemical names and physical and chemical	
	properties.	
CO 3	Acquire knowledge of yeast formulations.	
CO 4	Acquire skill of using different devices which are used in sanitation application.	
CO 5	. CO 5 Get knowledge about recent advances in contamination control	

Paper III Semester I Applied chemistry

At the end of the course, students will be able to	
CO 1	Understand chemicalalcohol.
CO 2	Learn carbohydrate proteinstructure chemical names and physical and chemical properties.

CO 3	Acquire knowledge of roll alcohol formulations.
CO 4	Acquire skill of using different devices which are used in alcohol application.

Paper IV Semester I Biochemistry

At the en	At the end of the course, students will be able to	
CO 1	Understand chemical pesticides and botanical pesticides.	
CO 2	Learn pesticide structure chemical names and physical and chemical properties.	
CO 3	Acquire knowledge of pesticide formulations.	
CO 4	Acquire skill of using different devices which are used in pesticide application.	
CO 5	Get knowledge about recent advances in pest control	

M.Sc. I Semester-II

Sub – Alcohol Technology 2

At the en	At the end of the course, students will be able to	
CO 1	Understand Basic of distillation	
CO 2	Learn alcohol structure chemical names and physical and chemical properties.	
	Fermentation	
CO 3	Acquire knowledge of alcohol formulations and fermentation.	
CO 4	Acquire skill of using different devices which are used in alcohol application.	
CO 5	Get knowledge about recent advances in ethanol plantation	

Sub – Applied instrumentation

At the end of the course, students will be able to	
CO 1	Understand instrument basic measurement system .
CO 2	Learn instrumentation structurephysical variable and physical and chemical properties.
CO 3	Acquire knowledge of analytical instrumentation.
CO 4	Acquire skill of using different devices which are used in pesticide application.
CO 5	Get knowledge about electronic system and control system

Sub – industrial fermentation

At the en	At the end of the course, students will be able to	
CO 1	Understand basics of fermentation.	
CO 2	Learn types of fermentation structure chemical names and physical and chemical properties.	
CO 3	Acquire knowledge of cell mobilization .	
CO 4	Acquire skill of using different biochemistry of alcohol technology.	
CO 5	Get knowledge about recent advances in carbon source of alcohol	

Sub - Microbiology

At the end of the course, students will be able to	
CO 1	Understand isolation and identification and mantantains of yeast.
CO 2	Learn yeast structure chemical names and physical and chemical properties.
CO 3	Acquire knowledge production yeast strain and strain improve .

CO 4	Acquire skill of using different devices which are used in pesticide application.
CO 5	Get knowledge about recent advances hygiene in alcohol industry

M.Sc. II Semester-III

Sub – Alcohol Technology 3

At the en	At the end of the course, students will be able to	
CO 1	Understand principle and application of alcohol technology.	
CO 2	Learn alcohol from non molasses source and manufacturingofmalt ,alcohol and cost of	
	alcohol production .	
CO 3	Acquire knowledge of alcohol formulations.	
CO 4	Acquire skill yeast & its uses.	
CO 5	Get knowledge about molecular sieves	

Sub - Microbiology

At the end of the course, students will be able to	
CO 1	Understand history &development microorganism.
CO 2	Learn single cell protein .
CO 3	Acquire knowledge of antibiotics.
CO 4	Acquire skill of using different devices which are used in pesticide application.
CO 5	Get knowledge about recent advances in pest control

Sub – (chemicalengineering)

At the en	At the end of the course, students will be able to	
CO 1	Understand Water quality surface water ,ground water drinking .	
CO 2	Learn pump, centrifugal.	
CO 3	Acquire heat exchanger unit .	
CO 4	Acquire skill general engineering .	
CO 5	Get knowledge about recent advances steam generation system	

Sub – **Elective** (industrial waste water ,pollutionprevenention control ,sugar technology)

At the end of the course, students will be able to	
CO 1	Understandindustrial waste water ,pollutionprevenention control ,sugar
	technology.
CO 2	Learn Industrial water structure chemical names and physical and chemical
	properties.
CO 3	Acquire knowledge of waste water treatment .pollution controll formulations.
CO 4	Acquire skill of using different devices which are used in pesticide application.
CO 5	Get knowledge about recent advances in pollution control

M.Sc. II Semester-IV

Sub – Alcohol Technology 4

At the end of the course, students will be able to	
CO 1	Understand alcohol production from grain.
CO 2	Learn alcoholic breverages.
CO 3	Acquire knowledge table wine formulations.
CO 4	Acquire skill of using different fruit and honey wine.
CO 5	Get knowledge about recent advances in pest control

Sub – Alcohol Technology 5

At the en	At the end of the course, students will be able to	
CO 1	Understand manturing of ENA .	
CO 2	Learn ENA structure chemical names and physical and chemical.	
CO 3	Acquire knowledge of IMFL (Wisaky rum gin and vodaka.	
CO 4	Acquire skill of manufacturing of the country liquor.	
CO 5	Get knowledge about recent advances in pest control	

Sub – Fermentation Technology

At the end of the course, students will be able to	
CO 1	Understand basics of fermentation .
CO 2	Learn types of fermentation structure chemical names and physical and chemical
	properties.
CO 3	Acquire knowledge of cell mobilization.
CO 4	Acquire skill of using different biochemistry of alcohol technology.
CO 5	Get knowledge about recent advances in carbon source of alcohol

Sub – Elective subject

At the end of the course, students will be able to	
CO 1	Understand chemical pesticides and botanical pesticides.
CO 2	Learn pesticide structure chemical names and physical and chemical properties.
CO 3	Acquire knowledge of pesticide formulations.
CO 4	Acquire skill of using different devices which are used in pesticide application.
CO 5	Get knowledge about recent advances in pest control

SCIENCE

M.Sc. Sugar Technology (ST) Programme Specific Outcomes

After the completion of the two year postgraduate programme in Agrochemicals and Pest Management, students will be able to ----.

PSO 1	Learn about Alcohol Production and Sugar Manufacturing and sugar structure, chemical names and physical and chemical properties.
PSO 2	Gain knowledge about soil formation, soil profile, soil properties and composition. Suagrproperties, alcohol properties.
PSO 3	Understand general characteristics, morphology and physiology microorganism, plant virus and viral diseases, disease management and control.
PSO	4 Acquire knowledge of production of Alcohol and Sugar , marketing and planning.
PSO 5	Understand the concept of ecology and interrelationship among

M.Sc. Sugar Technology (ST) Programme Specific Outcomes

M.Sc. I. Semester-I. Paper: I(SCA) -SugarcaneAgriculture

At the	At the end of the course, students will be able to	
CO 1	Introduction: Origen of Cane, cultivation in India, varieties, climatic conditions, sugar can eagroclimatic zones in India. Sugar can epricing and payment,	
CO 2	Soil: Types, properties – Visual & morphological properties, analytical properties, fertility & soil problems, sustaining fertility, soil conservation practices,	
CO 3	Planting : Preparatory tillage, planting time, selection of seedcane, methods of planting - Flat, ridges & furrows, trench, IISR86206,ring,spacedTransplanting&polybagseedlingTransplantingmethod.	
CO 4	Frowth of Sugarcane: Germination, development of shoot &root - factors affecting, tillering, growth of leaves, internodes &stem, factors influencing cane growth, formation and storage of sugarincane.	
CO 5	Get knowledge about recent advances in ethanol plantation	

Paper-I	I Sugar Processing- Clarification&Evaporation Unit	
At the en	At the end of the course, students will be able to	
CO 1	Acquire knowledge of Introduction of sugar industry & flow chart of sugar manufacturing process, Extraction of juice from cane, Maceration or imbibitions	
CO 2	Acquire knowledge of Compositionofcaneandjuice, Principleofjuiceclarification, Influence of lime on different constituents of juice, Effects of pH on sucrose and reducing sugar, Action of heat on sucrose andreducing sugar, Different processof can ejuiceclarification, Defection, Sulphitation and carbonation, Comparison between sulphitation & carbonation,	
CO 3	Acquire knowledge Theory of evaporation – Introduction, quantity of water evaporatedfromjuice, Heattransferinevaporator, Boilingpointofjuice, Norbert Rolexprinci pleapplicable to multiple effect evaporators	
CO 4	Acquire knowledge of Operation of evaporator, Off season testing of evaporator, Starting of evaporator, Juicelevelinevaporator, Condensate and non-condensable gas removal, Flash recovery of condensate, Use Of condensate, Stopping of evaporator	
CO 5	Acquire knowledge of Treatment of syrup, Construction and working of syrup sulphitor, Scaleformation and removal	

Paper:III-(SEM)SUGARENGINEERING--MILLING

At the en	At the end of the course, students will be able to	
CO 1	Acquire knowledge of Caneweighbridges:types,capacityetc.	
	Cane handling and feedingCane unloading - Bridge with trolley –having sling bar	
	system – two motion/three motion, auto de-hookingsystem	
CO 2	Acquire knowledge of CanepreparationsPreparationofcane, various devices of cane	
	preparation like kicker, chopper, leveler, cutterfibrizerandshredder	
CO 3	Acquire knowledge of Millsandmillcomponents—	
	Conventional threerollermill.	
CO 4	Acquire skill of using Mill drive types with merit and demerit, Mill power	
	requirement, Millgearing, Millcouplings and tailbars	
CO 5	Get knowledge about recent advances sugar technology	

Paper-IV(CC)CHEMICALCONTROL

At the en	At the end of the course, students will be able to	
CO 1	Technical definition mill and boiling houseFundamentalformulamillandboilinghouse	
CO 2	Acquire knowledge of Calculation for millhouse	
CO 3	Acquire knowledge of Calculationforrun report Pol, Brix, Non – sugar balance,	
	Clarification efficiency & clarification factor, Stock taking &available sugar, Boiling	
	house losses, Equivalentstandard granulated. (ESG), Conversion of raw sugar	
	recovery into white sugar recovery by using ESG formula, Virtual final molasses	

	purity,Operation including&excludingstoppage
CO 4	Acquire skill of Calculationforboilinghouse
CO 5	Get knowledge about recent advances in pest control

M.Sc. I Semester-II

Paper-I(M.SC)SUGAR CHEMISTRY

At the en	At the end of the course, students will be able to	
CO 1	Understand chemical Properties Carbohydrates—	
CO 2	Acquire knowledge of Proteins &Amino acids —	
	Learn alcohol structure chemical names and physical and chemical properties.	
CO 3	Acquire knowledge of Sucrose –	
	formulations.	
CO 4	Acquire skill of using different devices Sugar Derivatives & Sugar Alcohols	
CO 5	Get knowledge about recent advances in ethanol plantation	

Sub – Applied instrumentation

At the en	At the end of the course, students will be able to	
CO 1	Understand instrument.	
CO 2	Learn pesticide structure chemical names and physical and chemical properties.	
CO 3	Acquire knowledge of pesticide formulations.	
CO 4	Acquire skill of using different devices which are used in pesticide application.	
CO 5	Get knowledge about recent advances in pest control	

Paper: II (SP-CF)-Sugar Processing-Crystalisation & Finishing

At the en	d of the course, students will be able to
CO 1	Theory of crystallization & its zones, Grain & graining methods, Principles &practices
	in grainingprocess, Mechanism of pan boiling, Different
	massecuiteboilingscheme,Principlesandpracticesinpanboiling.
CO 2	Learn Construction of pan, Types of pan, Pan control & instrumentation,
	Cobenze's method for purity control, Calculations of massecuite % cane & molasses
	% cane by solid balance, Determination of crystal % massecuite, Determination
	ofcrystal size, volume and surface area, etermination of steam requirement
CO 3	Acquire knowledge of Centrifugal operations - Screen washing, Sugar
	washing, Massecuite charging, Separation of light and heavy molasses, Spinning and
	drying, DischargingSuperheatedwashwatersystem
CO 4	Acquire skill of using Screen washing,
CO 5	Get knowledge about recent advances in pest control

Sub – Paper: III-(SESP) SUGAR ENGINEERING- I –STEAM & POWERGENERATION

At the end of the course, students will be able to	
CO 1	Understand Steam Generation: (Boiler)
CO 2	Learn Boiler Instrumentation & Control-
CO 3	Acquire knowledge Boiler water treatment -
CO 4	Acquire skill of using Power generation and Alternator
CO 5	Get knowledge about recent advances in pest control

M.Sc. II Semester-III

Sub – Paper: IX (ECC)- Equipment's & capacity calculation

At the en	At the end of the course, students will be able to	
CO 1	Understand Capacity of weighing scale and reaction tank.	
CO 2	Learn Capacity of equipment for process chemical	
CO 3	Acquire knowledge of Capacity of juice heater	
CO 4	Acquire skill of Capacity of evaporator	
CO 5	Get knowledge about	
	Vacuum pan Pan capacity	

Paper – X (ASM) Allied sugar manufacturing.

At the end of the course, students will be able to	
CO 1	Understand Heat transfer
CO 2	Learn Heat transfer equipment's
CO 3	Acquire knowledge of Fluid transfer
CO 4	Acquire skill of using Manufacturing of Jaggery&Jaggery powder.
CO 5	Get knowledge about Manufacturing of branded sugar

Paper – XI (CEHMT) Chemical engineering heat and material transfer

At the en	At the end of the course, students will be able to	
CO 1	Understand chemical pesticides and botanical pesticides.	
CO 2	Learn pesticide structure chemical names and physical and chemical properties.	
CO 3	Acquire knowledge of pesticide formulations.	
CO 4	Acquire skill of using different devices which are used in pesticide application.	
CO 5	Get knowledge about recent advances in pest control	

Paper – XII (ET) AT-Alcohol Technology(Elective 1)

At the end of the course, students will be able to	
CO 1	Understand a)Cane molasses
CO 2	Learn b)Definition of
CO 3	Acquire knowledge a) Defination& type of fermentor
CO 4	Acquire skill of b) Propagation of pure yeast culture.
CO 5	Get knowledge a)Types of distillation process

M.Sc. II Semester-IV

Sub – Paper – XII (ET) BCE-Bio-chemical engineering (Elective 2)

At the en	At the end of the course, students will be able to	
CO 1	Understand Introduction: Bioprocess engineering and technology. An introduction to	
	basic biological science	
CO 2	Learn Enzymes and proteins:	
CO 3	Acquire knowledge of Fermentation Technology	
CO 4	Acquire skill of using Downstream processing:	
CO 5	Get knowledge about recent advances in pest control	

Sub – Paper – XII (ET) EIC –Electronics and instrument engineering.(Elective 3)

At the en	d of the course, students will be able to			
CO 1	Basic Electronics: Circuit elements in series & parallel. Semiconductor Devices –			
	Diode as Rectifier, Zener Diode as Voltage Regulator, Transistor as Amplifier. Field			
	Effect Transistor –Jeet&Mosfet. Thirstier – Silicone Controlled Rectifier.			
CO 2	Learn Instrumentation: Introduction, important terms associated with instruments such			
	as range, span, accuracy, error and sensitivity.			
CO 3	Acquire knowledge of Pressure measurement - Various units and their conversion,			
	manometers, Bourdon tube, diaphragm, bellows, capsule, strain gauges for pressure			
	measurement.			
CO 4	Acquire skill of Control System: Closed Loop System - Basic components. Servo and			
	regulator control. Controllers – P, I, D and On –Off modes. Controller combinations -			
	Final control elements -Valves, actuators and valve positioners.			
CO 5	Get knowledge about recent advances in pest control			

Sub – Paper – XIII (ACM) Allied Co Product Manufacturing

At the en	nd of the course, students will be able to
CO 1	Understand Molasses Composition of molasses, storage of molasses, Quality of molasses –pre clarification of molasses,
CO 2	Learn Bagasse Composition of bagasse, storage of bagasse, Separation of pith from bagasse,
CO 3	Acquire knowledge Press mud (filter cake) Composition of filter cake, Use of filter cake as fertilizer process, Use of filter cake for production of cane wax process,
CO 4	Acquire skill of using Ethanol production Production of ethanol from cane juice and cane syrup –extraction of juice process .clarification of juice process .evaporation process, fermentation process.
CO 5	Get knowledge about recent advances in Ethanol production

Sub – Elective subject

Paper – XIV (ASTE) Advance sugar technology and engineering

At the end of the course, students will be able to		
CO 1	Understand □ screening of the juice Effect of bagasillo on manufacturing process, its removal by DSM screen, rotary screen & two stage rotary screens, Advantage of rotary Screen.	
CO 2	Learn Juice stabilization & pH control system On line mass flow meter for juice weighment, Auto pH control system for juice clarification.	
CO 3	Acquire knowledge of Cane diffuser	
CO 4	Acquire skill of Mill Efficiency	
CO 5	Get knowledge about recent advances in pest control	

B.Sc. I Semester-I

Sub – Applied chemistry (sugar chemistry & biochemistry) PAPER I&II

At the end of the course, students will be able to		
CO 1	Introduction – Etymology, History: accent time, middle age & modern. Chemistry of sugar, Constituents of sugar, Natural polymers of sugars, Flammability of sugar. Types of sugar, Monosaccharide's – Glucose, Fructose, Disaccharides –sucrose .lactose. &maltose.	
CO 2	Acquire knowledge Forms of sugar and its use .Health effects of sugar- Blood glucose level - Obesityand Diabetics, Cardiovascular disease- Alzheimer's disease Tooth decays -	

	Addiction forming Hyper activity- Measurement					
CO 3	Acquire knowledge Physical & Chemical properties of sugar.					
	Physical properties of sucrose-structure of sucrose molecule					
	.sucrose derivative, decomposition of sucrose					
CO 4	Acquire knowledge Chemical properties of sucrose, sucrose molecule, crystalline					
	sucrose,					
	amorphous sucrose, aqueous sucrose.					
CO 5						
	reducing sugar(dextrose &laevulose) solubility, density, refractive index, optical					
	rotation					
	Chemical properties of reducing sugar(dextrose & laevulose) with organic reagent:					
	Acetone, benzoic, carbonate, acetate.					
CO6	Acquire knowledge Introduction to living cells, classifications of living cells, structure					
	and function of cells, Structure and typical characteristics of DNA & RNA.					
	Proteins: Characteristics and classifications of proteins, protein					
	structure, proteins in sugarcane juice. Amino acids: Classifications and properties,					
	Amino acids insugarcane juice and molasses.					

${\bf Sub\ -PHYSICS\ (Properties\ of\ Material\ \&\ Thermodynamics)} {\bf I\&II}$

At the en	nd of the course, students will be able to					
CO 1	Acquire knowledge Surface tension Explanation of surface tension : Angle of contact					
	and					
	wettability, relation between surface tension, excess of pressure and radius					
	of curvature, excess pressure in soap bubble and rise of liquid in capillary,					
	effect of surface tension on evaporation and condensation, effect of impurity					
	and temperature on surface tension.					
CO 2	Acquire knowledge Fluid Dynamics & Viscosity					
	General concept of fluid flow, streamline and turbulent flow, the equation					
	of continuity, Bernoulli's equation, its application to venturimeter. Coefficient of					
	Viscosity, flow of liquid through the capillary tube, poiseuilles e, searle's viscometer,					
	determination of viscosity by ostwald's viscometer.					
CO ₃	Harvesting: Manual & mechanical harvesting of cane, transportation of cane, post					
	harvest					
	deterioration of sugarcane – causes, effect & losses, effect of extraneousMolecule					
	confirm Mean free path and its calculation (approximate method),					
	ideal & real gases, deviation from ideal gas (Boyles law), Vander Waal's equation for					
	real					
	gas. Interpretation of temperature Andrew's curve, critical point, critical constants					
	and					
	their relation with Vander Waal's constants, reduced equation of state.					
CO 4	Acquire knowledge ThermodynamicsIdea of thermodynamic equilibrium, isothermal					
	and processes,					
	Carnot's cycle, its efficiency and Carnot's theorem (heat engine), second law of					
	thermodynamics, reversible and irreversible processes, entropy, its physical					

	significance,			
	entropy changes during fusion of a solid and vaporization of a liquid.			
CO 5	Acquire knowledge DiffractionTypes of diffraction, plane diffraction grating,			
	construction, theory and its application to			
	determine wavelength of light, resolving power, power of plane grating.			
CO6	Acquire knowledge PolarizationIdea of polarization, polarization by reflection,			
	Brewster's law, polarization by refraction,			
	pile of plates, double refraction, Huygens ex of refraction, Nicol prism, optical			
	rotation –			
	lens of rotation of place of polarization, half shade polarimeter.			

Sub – Applied Maths: (Algebra and Geometry)I&II

At the er	nd of the course, students will be able to
CO 1	Acquire knowledge General equation TheoryGeneral equation of place, normal form intercept form, two parallel planes, Angle between two planes. Equation of a plane, passing through a point. Direction of normal to the plane, plane passing through three points. Distance of a point from plane, straight line in three dimensional. Equation of straight line symmetric form of equation of straight line Inter section of line & plane line passing through a point at perpendicular to given plane. Intersection of two lines, image of a point in a plane.
CO 2	Acquire knowledge Trigonometric ratios. Trigonometric ratios of some standard angles. Trigonometric identities & their derivations.
CO 3	Acquire knowledge Determinants and matricesEvaluation of determinants. Fundamental properties of determinants. Cramer's rule. Solutions of homogeneous & non-homogeneous equations. Types of matrices. Algebra of matrices, multiplication of matrices. Inverse of a matrix, application of matrices to solve system of simultaneous equations. Rank of a matrix.
CO 4	Acquire knowledge Acquire skill FunctionTypes of functions. Algebraic functions, exponential functions, trigonometric functions, logarithmic functions. Algebra of functions. Increasing & decreasing functions. Concept of limit. Limit of a function. Algebra of limits. Method of evaluation of limits. Evaluation of limit of a function at infinity. Continuity of a function
CO 5	Acquire knowledge Derivative of a function. Derivative of some standard functions from first principle. Algebra of derivatives, rules of differentiation with regards to sum, product, difference & quotient of two functions. Derivative of some simple composite function, chain rules. Second order derivatives. Maxima & minima of a function of single variable and two variables. Application of derivatives tangent & normal, velocity & acceleration.

Sub – Sugar Cane Agriculture:(Sugar cane cultivation & agronomy)&Pathology

CO 1						
	Acquire knowledgeIntroduction: Origen of Cane, cultivation in India, varieties,					
	climatic conditions,					
	sugarcane agro climatic zones in India. Maharashtra state statistics of cane. Sugar cane					
	pricing and payment,, cane as bio- fuel. Internal and external morphology of cane					
CO 2	Acquire knowledgeCultivation practices.Soil: Types, properties – Visual &					
	morphological properties, analytical properties, fertility					
	& soil problems, sustaining fertility, soil conservation practices,					
	Planting: Preparatory tillage, planting time, selection of seed cane, methods of					
	planting -					
	Flat, ridges & furrows, trench, IISR 86206, ring, spaced Trans planting & polybag					
	seedling					
	Weeds: common weeds, aquatic weeds ,loss due to weeds , method to weed control					
	(mechanical, manual &biological) integrated weed management. Measure to reduced					
	weed					
CO ₃	Acquire knowledge Growth of Sugarcane: Germination, development of shoot & root					
	- factors affecting, Tillering, growth of leaves, internodes & stem, factors influencing					
	cane growth, formation					
	and storage of sugar in cane.					
CO 4	Acquire skill Irrigation: Water requirement, scheduling, method of irrigation – surface, overhead or					
	sprinkler, drip irrigation, water quality, water logging, drainage – side, main & infield					
	drains.of using different devices which are used in pesticide application.					
CO 5	Maturing: Cane nutrition, functions of macro & micro (trace) nutrients, fertilizers – N,					
	P, K, S, Ca& Mg carriers, Mixed or compound fertilizers, biofertlizers, foliar					
	applications, fertigation, organic & green maturing, time & method of application,					
	visual symptoms of					
	nutrient deficiencies and disorders.					

B.Sc. I Semester-II

Subject: Applied Chemistry: III (DCS ST9) (Organic Chemistry)

At the end of the course, students will be able to		
CO 1	Understand Introduction: Sugar and Polysaccharides:	
CO 2	Learn Organic acids & Polyphones	
CO 3	Acquire knowledge of Solution & Strength of Solution: [12]	
	• Definitions of the terms: Soltue, solvent,	
CO 4	Acquire skill of using Distribution Law:	
CO 5	Get knowledge about Analytical Chemistry and Chromatography:	

Applied Physics: III (DSC ST11)

(Basic Instrumentation)

At the end of the course, students will be able to		
CO 1	Introduction to Instrumentation:	
CO 2	Liquid and Temperature Measurement:	
CO 3	Acquire knowledge Liquid level measurement : Direct Method: Liquid level	
	indicators, Direct Method: Hook type, sight glass, float type.	
CO 4	Acquire skill of Pressure and flow Measurement: .	
CO 5	Get knowledge about recent advances in pest control	

Subject: Applied Physics: IV (DSC ST12)
(Sugar Instrumentation)

(Sugar	Instru	menta	iuon)

At the en	At the end of the course, students will be able to	
CO 1	Understand Signal Conditioner:	
CO 2	Learn Flame Photometer:	
CO 3	Acquire knowledge Polarimetry:	
	Introduction, Plane polarized light, Instrumentation system of polarimetry,	
	Applicationofpolarimetry in sugar Technology, Refractometer, Introduction Snell's	
	Law – Specific refraction	
CO 4	Acquire skill of using pH & Conductivity measurements: pH meter, Instrumentation	
	of pH meter, Conductivity meter Instrumentation of conductivity meter, Wheatstone	
	bridge circuit, conductivity cell application	
CO 5	Get knowledge about recent advances in Ethanol production	

Subject: Applied Mathematics: III (DSC ST13) (Descriptive statistics)

At the en	At the end of the course, students will be able to	
CO 1	Introduction:	
	Meaning and scope of statistics, Population and Sample, concept of sample with	
	illustrations, methods of sampling.	
	Data: Raw data, Attributes and variables, discrete and continuous variables,	
	frequency distribution.	
CO 2	Moments and Measures of Skewness and Kurtosis:	
CO 3	Acquire knowledge of Raw and central moments (only first four moments), Relation	
	between central and raw moments, Skewness : Skewness of a frequency distribution,	
	positive and negative skewness, Measures	
	ofskewness based on moments.	
CO 4	Acquire skill of Correlation and regression	
CO 5	Get knowledge about recent advances (Descriptive statistics)	

Subject: Applied Mathematics: IV (DSC ST14) (Probability Theory)

At the en	At the end of the course, students will be able to	
CO 1	Introduction to Probability:	
CO 2	Univariate probability distributions	
CO 3	Acquire knowledge Discrete uniform distribution : pmf, mean & variance. Binomial	
	distribution: pmf, mean & variance, additive property, recurrence relation for	
	probabilities. Hyper geometric distribution:	
CO 4	Acquire skill of Pressure and flow Measurement: .	
CO 5	Get knowledge about recent advances in (Probability Theory)	

Subject: Sugar Cane Agriculture: III (DSC ST15)

(Sugar cane cultivation & agronomy)

At the en	At the end of the course, students will be able to	
CO 1	Understand Farm Implements and Machinery In Sugarcane Cultivation, Strategies for	
	Transfer of Technology in Sugarcane Agriculture, The different operations carried out	
	during sugarcane planting are	
CO 2	Learn Flame Photometer:	
CO 3	Acquire Agricultural economics:	
	Farm management, scope, importance and characteristics,	
CO 4	Acquire skill of using Agriculture technology -	
CO 5	Get knowledge about recent advances in Ethanol production	

Subject: Sugar Cane Agriculture: IV (DSC ST16) (Sugar cane Pathology)

At the en	At the end of the course, students will be able to	
CO 1	Introduction:	
	Meaning and scope of statistics, Population and Sample, concept of sample with	
	illustrations, methods of sampling.	
	Data : Raw data, Attributes and variables, discrete and continuous variables,	
	frequency distribution.	
CO 2	Moments and Measures of Skewness and Kurtosis:	
CO 3	Acquire knowledge of Raw and central moments (only first four moments), Relation	
	between central and raw moments, Skewness : Skewness of a frequency distribution,	
	positive and negative skewness, Measures	
	ofskewness based on moments.	
CO 4	Acquire skill of Correlation and regression	
CO 5	Get knowledge about recent advances (Descriptive statistics)	

Applied Physics: III (DSC ST11)

(Basic Instrumentation)

At the en	At the end of the course, students will be able to	
CO 1	Introduction to Instrumentation:	
CO 2	Liquid and Temperature Measurement:	
CO 3	Acquire knowledge Liquid level measurement : Direct Method: Liquid level	
	indicators, Direct Method: Hook type, sight glass, float type.	
CO 4	Acquire skill of Pressure and flow Measurement: .	
CO 5	Get knowledge about recent advances in pest control	

Subject: Applied Physics: IV (DSC ST12) (Sugar Instrumentation)

At the end		d of the course, students will be
	CO 1	Understand Signal Conditions

At the en	nd of the course, students will be able to
CO 1	Understand Signal Conditioner:
CO 2	Learn Flame Photometer:
CO 3	Acquire knowledge Polarimetry:
	Introduction, Plane polarized light, Instrumentation system of polarimetry,
	Applicationofpolarimetry in sugar Technology, Refractometer, Introduction Snell's
	Law – Specific refraction
CO 4	Acquire skill of using pH & Conductivity measurements: pH meter, Instrumentation
	of pH meter, Conductivity meter Instrumentation of conductivity meter, Wheatstone
	bridge circuit, conductivity cell application
CO 5	Get knowledge about recent advances in Ethanol production

Subject: Applied Mathematics: III (DSC ST13) (Descriptive statistics)

At the er	At the end of the course, students will be able to	
CO 1	Introduction:	
	Meaning and scope of statistics, Population and Sample, concept of sample with	
	illustrations, methods of sampling.	
	Data: Raw data, Attributes and variables, discrete and continuous variables,	
	frequency distribution.	
CO 2	Moments and Measures of Skewness and Kurtosis:	
CO 3	Acquire knowledge of Raw and central moments (only first four moments), Relation	
	between central and raw moments, Skewness : Skewness of a frequency distribution,	
	positive and negative skewness, Measures	
	ofskewness based on moments.	
CO 4	Acquire skill of Correlation and regression	
CO 5	Get knowledge about recent advances (Descriptive statistics)	

B.Sc. II Semester-III

DSC-ST 17: Sugar Engineering (Mill house)

At the en	At the end of the course, students will be able to	
CO 1	Introduction to Cane handling and preparation	
CO 2	Cane unloading -Bridge with trolley- having sling bar system-two motion	
CO 3	Acquire knowledge Mills, mill components, mill drive & mill setting	
CO 4	Acquire skill of Mill setting-Roller setting, pressure feeder setting; underfeed roller setting,	
	chute opening, trash plate setting, and practical optimization of mill setting.	
CO 5	Get knowledge about recent advances in Sugar Engineering (Mill house)	

Sugar Manufacturing (Crystallization)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory of crystallization & its zones	
CO 2	Granting &graining methods	
CO 3	Acquire Principals & practices in graining process.	
CO 4	Acquire skill Mechanism of pan boiling.	
CO 5	Get knowledge about recent Calculations of massecuite %cane &molasses %cane by solid	
	balance	

Subject: Sugar manufacturing (Centrifugal)

At the end of the course, students will be able to	
CO 1	Introduction:
	¬ Centrifugal theories
CO 2	Constructions of batch machine ,types of drive and control ¬ Constructions of continuous machine types of driver and control
CO 3	Acquire knowledge of Centrifugal operations — Screen washing — Sugar washing
CO 4	Acquire skill of Correlation and regression
CO 5	Get knowledge about recent advances (Descriptive statistics)

DSC-ST 17: DSC-ST 21: Equipment Design (Clarification house)

At the end of the course, students will be able to	
CO 1	Introduction to Cane handling and preparation
CO 2	Cane unloading -Bridge with trolley- having sling bar system-two motion
CO 3	Acquire knowledge Mills, mill components, mill drive & mill setting
CO 4	Acquire skill of Mill setting-Roller setting, pressure feeder setting; underfeed roller setting,
	chute opening, trash plate setting, and practical optimization of mill setting.
CO 5	Get knowledge about recent advances in Sugar Engineering (Mill house)

Sugar Manufacturing (Crystallization)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory General — Metals, their properties and uses in sugar industries —	
	Different type of metals used in sugar industries. — Metal properties related to engineering/mechanical properties of metal	
CO 2	Granting &graining methods	
CO 3	Acquire Juice heaters ¬ Heat transfer coefficient ¬ Hating surface. ¬ Sizing of heater ¬ Tube size and number of tubes ¬ No of passes and juice inlet/outlet sizes ¬ Construction of juice heater.	
CO 4	Acquire skill Juice Sulphitor ¬ Factors used to design continuous juice Sulphitor or reaction tank. ¬ Lime proportioning device (lime dosing) ¬ SO2 gas distribution (SO2 gas dosing) ¬ Mechanical stirrer for mixing of reagent ¬ Design of tank with respect of diameter ¬ Automation for pH control ¬ Construction of continuous juice Sulphitor	
CO 5	Get knowledge about recent Sugar Manufacturing (Crystallization)	

Subject: DSC-ST 22: Equipment Design (Evaporation & Crystallization)

At the en	At the end of the course, students will be able to	
CO 1	Introduction: Evaporator ¬ Heat transfer & Evaporation coefficient ¬ Heating Surface ¬ Tube size and no of tubes ¬ Juice/syrup inlet-out let connection ¬ Sizing Triple/Quadruple/Quintuple ¬ Steam requirement.	
CO 2	Syrup Sulphitor ¬ Factors used to design syrup Sulphitor ¬ Design of syrup Sulphitorwith respective to diameter. ¬ Automation for pH control ¬ Specification and construction of syrup Sulphitor	
CO 3	Acquire knowledge of Vacuum Pan ¬ Type of pan ¬ Important requirement of pan boiling used to design batch pan. ¬ Different design of batch pan ¬ The major design aspects used in continuous pan ¬ Different design of continuous pan ¬ Pan capacity and heating surface. ¬ Construction of pan	
CO 4	Acquire skill of Crystallizers ¬ Type of crystallizers ¬ Horizontal v/s Vertical crystallizers. ¬ Capacity of crystallizer ¬ Various zones and their retention time in cooling process ¬ Quantity of water required for cooling	
CO 5	Get knowledge about recent advances : Equipment Design (Evaporation & Crystallization)	

DSC-ST 23: Chemical Engineering-(Heat & Momentum Transfer)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory Heat transfer – Conduction- Mechanism of heat transfer by	
	conduction in solids, Fourier's low of heat transfer, Thermal conductivity, and heat	
	loss in conduction. Thermal insulation and optimum thickness for insulation	
CO 2	Convection- Heat transfer by convection, forced and natural convection, individual and overall	
	heat transfer coefficient. Fouling factor, overall resistance Effect of drop wise and film wise	
	condensation, , Effect of noncondensable gases.	
CO 3	Acquire Heat Transfer Equipment: — Heater- multipass shell and tube type heat exchanger-	
	shell, tubes, tube pitch ligaments' (clearance), tube passes, Baffles.	
CO 4	Acquire skill Fluid statics- Concept of momentum transfer, Nature of fluid and pressure	
	concept, variation of pressure with height- hydrostatic equilibrium. Barometric equation	
	,measurement of fluid pressure manometer.	
CO 5	Get knowledge about recent Chemical Engineering-(Heat & Momentum Transfer)	

Subject: DSC-ST 24 Chemical engineering-(Unit operation)

At the end of the course, students will be able to	
CO 1	Introduction:
	Necessity& mechanism, Rattling's law, kick's law, Bond's law, method of operating crusher,
	Size reduction in sugar industries
CO 2	Leaching techniques, perforations through solids bed, stationary bed &moving bed. Counter-
	current leaching, theory of diffusion. Theory of extraction of juice from cane
CO 3	Acquire knowledge of Law 0f settling, Stokes law, Batch settling test, Design feature of
	continuous thickeners, Determination of thickeners area ,factors affecting the settlings rates,
	Different type of settling equipment .equipments in sugar industries.
CO 4	Acquire skill of Crystallizers ¬ Type of crystallizers ¬ Horizontal v/s Vertical crystallizers.
	¬ Capacity of crystallizer ¬ Various zones and their retention time in cooling process ¬
	Quantity of water required for cooling
CO 5	Get knowledge about recent advances : Equipment Design (Evaporation & Crystallization)

DSC-ST 23: :Capacity Calculation (Clarification house)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory Capacity of weighing scale and reaction tank. ¬ Capacity of juice and imbibition's water weighing scale, ¬ Capacity of raw juice and imbibition's water pumps ¬ Capacity of reaction tank, calculation of retention time of juice in reaction tank. Calculation forso2 gas distribution system	
CO 2	Capacity of Equipment for process chemical ¬ Calculation of optimum dose of phosphoric acid. ¬ Capacity of lime preparation equipment with lime pumps. ¬ Capacity of Sulphur burner and air compressor.	
CO 3	Acquire Capacity of juice heater ¬ Calculation of Juice heater capacity ¬ Calculation of juice velocity in the juice heater. ¬ Calculation of number tubes and passes in the juice heater.	
CO 4	Acquire skill Juice retention time in different type of clarifier ¬ Capacity of clarifier ¬ Capacity of clear juice pump, capacity of mud pump. Capacity of flash tank,	
CO 5	Get knowledge about recent Capacity Calculation (Clarification house)	

Subject: Capacity calculation (Evaporation &Crystallization house)

At the end of the course, students will be able to	
CO 1	Introduction: Capacity of Evaporator ¬ Co-efficient of heat transmit ion, ¬ Quantity of water evaporated, ¬
	Properties of steam, ¬ Boiling point elevation.
CO 2	Vacuum pan ¬ Optimum S/V ratio of different pan. ¬ Pan capacity by massecuite %cane method.
CO 3	Acquire knowledge of Centrifugals ¬ Capacity of cooling crystallizers, quantity of water required for cooling ¬ Capacity of centrifugal, Capacity of runoff pump. ¬ Capacity of melter and melt pump
CO 4	Acquire skill of Finishing operation ¬ Capacity of hopper, elevator and grader. ¬ Capacity of hot and cold air blower ¬ Capacity of sugar silo.
CO 5	Get knowledge about recent advances : Equipment Design (Evaporation & Crystallization)

DSC-ST 23: Chemical Engineering-(Heat & Momentum Transfer)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory Heat transfer – Conduction- Mechanism of heat transfer by	
	conduction in solids, Fourier's low of heat transfer, Thermal conductivity, and heat	
	loss in conduction. Thermal insulation and optimum thickness for insulation	
CO 2	Convection- Heat transfer by convection, forced and natural convection, individual and overall	
	heat transfer coefficient. Fouling factor, overall resistance Effect of drop wise and film wise	
	condensation, , Effect of noncondensable gases.	
CO 3	Acquire Heat Transfer Equipment: Heater- multipass shell and tube type heat exchanger-	
	shell, tubes, tube pitch ligaments' (clearance), tube passes, Baffles.	
CO 4	Acquire skill Fluid statics- Concept of momentum transfer, Nature of fluid and pressure	
	concept, variation of pressure with height- hydrostatic equilibrium. Barometric equation	
	,measurement of fluid pressure manometer.	
CO 5	Get knowledge about recent Chemical Engineering-(Heat & Momentum Transfer)	

Subject: DSC-ST 24 Chemical engineering-(Unit operation)

At the end of the course, students will be able to	
CO 1	Introduction:
	Necessity& mechanism, Rattling's law, kick's law, Bond's law, method of operating crusher,
	Size reduction in sugar industries
CO 2	Leaching techniques, perforations through solids bed, stationary bed &moving bed. Counter-
	current leaching, theory of diffusion. Theory of extraction of juice from cane
CO 3	Acquire knowledge of Law 0f settling, Stokes law, Batch settling test, Design feature of
	continuous thickeners, Determination of thickeners area ,factors affecting the settlings rates,
	Different type of settling equipment .equipments in sugar industries.
CO 4	Acquire skill of Crystallizers ¬ Type of crystallizers ¬ Horizontal v/s Vertical crystallizers.
	¬ Capacity of crystallizer ¬ Various zones and their retention time in cooling process ¬
	Quantity of water required for cooling
CO 5	Get knowledge about recent advances : Equipment Design (Evaporation & Crystallization)

DSC-ST 23: :Capacity Calculation (Clarification house)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory Capacity of weighing scale and reaction tank. ¬ Capacity of juice and imbibition's water weighing scale, ¬ Capacity of raw juice and imbibition's water pumps ¬ Capacity of reaction tank, calculation of retention time of juice in reaction tank. Calculation forso2 gas distribution system	
CO 2	Capacity of Equipment for process chemical ¬ Calculation of optimum dose of phosphoric acid. ¬ Capacity of lime preparation equipment with lime pumps. ¬ Capacity of Sulphur burner and air compressor.	
CO 3	Acquire Capacity of juice heater ¬ Calculation of Juice heater capacity ¬ Calculation of juice velocity in the juice heater. ¬ Calculation of number tubes and passes in the juice heater.	
CO 4	Acquire skill Juice retention time in different type of clarifier ¬ Capacity of clarifier ¬ Capacity of clear juice pump, capacity of mud pump. Capacity of flash tank,	
CO 5	Get knowledge about recent Capacity Calculation (Clarification house)	

Subject: Capacity calculation (Evaporation & Crystallization house)

At the en	At the end of the course, students will be able to	
CO 1	Introduction:	
	Capacity of Evaporator ¬ Co-efficient of heat transmit ion, ¬ Quantity of water evaporated, ¬ Properties of steam, ¬ Boiling point elevation.	
CO 2	Vacuum pan ¬ Optimum S/V ratio of different pan. ¬ Pan capacity by massecuite %cane method.	
CO 3	Acquire knowledge of Centrifugals ¬ Capacity of cooling crystallizers, quantity of water required for cooling ¬ Capacity of centrifugal, Capacity of runoff pump. ¬ Capacity of melter and melt pump	
CO 4	Acquire skill of Finishing operation ¬ Capacity of hopper, elevator and grader. ¬ Capacity of hot and cold air blower ¬ Capacity of sugar silo.	
CO 5	Get knowledge about recent advances : Equipment Design (Evaporation & Crystallization)	

Subject: Chemical Control (Mill house control)

At the en	At the end of the course, students will be able to	
CO 1	Introduction:	
	Technical definition — fundamental formula — Differential method for calculation of Brix	
	%Bagasse, fiber %Bagasse, added water % fiberetc ¬ Inferential method for calculation of	
	mixed juice% cane, Bagasse %cane, added water %cane etc. ¬ Clarification of some concepts	
	like java ratio, E.R.Q.V, B.F.C.W.etc	
CO 2	¬ Primary Extraction ¬ Secondary Extraction ¬ Mill Extraction, reduced mill extraction and	
	whole mill extraction – Control parameters and norms for mill efficiency	
CO 3	Acquire knowledge of Centrifugals – Capacity of cooling crystallizers, quantity of water	
	required for cooling ¬ Capacity of centrifugal, Capacity of runoff pump. ¬ Capacity of	
	melter and melt pump	
CO 4	Acquire skill of Finishing operation ¬ Capacity of hopper, elevator and grader. ¬ Capacity	
	of hot and cold air blower – Capacity of sugar silo.	
CO 5	Get knowledge about recent advances : Chemical Control (Mill house control)	

Subject: Chemical Control (Boiling house control)

At the end of the course, students will be able to	
CO 1	Introduction:
	Technical definition — Basic formulas for daily manufacturing report
CO 2	Calculation for run report ¬ Pol, Brix, Non-sugar balance ¬ Clarification efficiency
	&clarification factory. ¬ stocking&available sugar. ¬ Boiling house losses. ¬ Equivalent
	standard granulated. (ESG)
CO 3	Acquire knowledge of Conversion of raw sugar recovery into white sugar recovery by using
	ESG formula ¬ Virtual final molasses purity. ¬ Operation including & excluding stoppage.
CO 4	Acquire skill of Recorded boiling house recovery. ¬ Overall recovery ¬ Reduced overall
	recovery. ¬ Control parameters and norms for efficiency.
CO 5	Get knowledge about recent advances : Chemical Control (Mill house control)

B.Sc. II Semester-IV

DSC-ST 23: Chemical Engineering-(Heat & Momentum Transfer)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory Conduction- Mechanism of heat transfer by conduction in solids,	
	Fourier's low of heat transfer, Thermal conductivity, and heat loss in conduction.	
	Thermal insulation and optimum thickness for insulation.	
CO 2	Convection- Heat transfer by convection, forced and natural convection, individual and overall	
	heat transfer coefficient. Fouling factor, overall resistance Effect of drop wise and film wise	
	condensation, , Effect of noncondensable gases	
CO 3	Acquire Capacity of juice heater — Heater- multipass shell and tube type heat exchanger-shell,	
	tubes, tube pitch ligaments' (clearance), tube passes, Baffles.	
CO 4	Acquire skill Fluid statics- Concept of momentum transfer, Nature of fluid and pressure	
	concept, variation of pressure with height- hydrostatic equilibrium. Barometric equation	
	,measurement of fluid pressure manometer. ¬ Fluid flow –types of fluid's ,viscosity of gases	
	and liquids. Types of flow – laminar & turbulent, Reynolds number .Basic equation of fluid	
	flow, Average velocity, and mass velocity.continuity equation, flow of incompressible fluids.	
	Laminar flow through circularconduit, turbulent flow through pipes, fraction factor	
CO 5	Get knowledge Chemical Engineering-(Heat & Momentum Transfer)	

Subject: DSC-ST 24 Chemical engineering-(Unit operation)

At the end of the course, students will be able to	
CO 1	Introduction: Size reduction — Necessity& mechanism, Rattling's law, kick's law, Bond's law, method of operating crusher, Size reduction in sugar industries.
CO 2	Vacuum pan ¬ Optimum S/V ratio of different pan. ¬ Pan capacity by massecuite %cane method.
CO 3	Acquire knowledge Leaching techniques, perforations through solids bed, stationary bed &moving bed. Counter-current leaching, theory of diffusion. Theory of extraction of juice from cane
CO 4	Acquire skill of Law 0f settling, Stokes law, Batch settling test, Design feature of continuous thickeners, Determination of thickeners area ,factors affecting the settlings rates, Different type of settling equipment .equipments in sugar industries
CO 5	Get knowledge about recent advances : Chemical engineering-(Unit operation)

Subject: DSC-ST 25:Capacity Calculation (Clarification house)

At the e	At the end of the course, students will be able to	
CO 1	Introduction:	
	Capacity of weighing scale and reaction tank. ¬ Capacity of juice and imbibition's water weighing scale, ¬ Capacity of raw juice and imbibition's water pumps ¬ Capacity of reaction tank, calculation of retention time of juice in reaction tank. Calculation forso2 gas d	
CO 2	Capacity of weighing scale and reaction tank. ¬ Capacity of juice and imbibition's water weighing scale, ¬ Capacity of raw juice and imbibition's water pumps ¬ Capacity of reaction tank, calculation of retention time of juice in reaction tank. Calculation forso2 gas distribution	

	system
CO 3	Acquire knowledge of Calculation of Juice heater capacity ¬ Calculation of juice velocity in
	the juice heater. ¬ Calculation of number tubes and passes in the juice heater. ¬ Calculation
	of juice inlet/outlet pipe size. Calculation of steam/vapor pipe size. Calculation of condensate pipe size, calculation of non-condensable gases pipe size. Calculation of tube plate diameter.
CO 4	Acquire skill of Finishing operation — Juice retention time in different type of clarifier —
	Capacity of clarifier — Capacity of clear juice pump, capacity of mud pump. Capacity of flash
	tank, Capacity of rotary vacuum filter. — Capacity of syrup Sulphitor and syrup pumps.
CO 5	Get knowledge about recent advances : DSC-ST 25:Capacity Calculation (Clarification
	house)

DSC-ST 26: Capacity calculation (Evaporation & Crystallization house)

At the er	At the end of the course, students will be able to	
CO 1	Introduction:	
	Capacity of Evaporator ¬ Co-efficient of heat transmit ion, ¬ Quantity of water evaporated, ¬	
	Properties of steam, ¬ Boiling point elevation. ¬ Heating surface of evaporator station. ¬	
	Calculation of individual Brix — Calculation of vapor piping. — Steam requirement without	
	vapor bleeding, steam requirement with vapor bleeding to juice heater and pan.	
CO 2	Optimum S/V ratio of different pan. ¬ Pan capacity by massecuite %cane method. ¬	
	Calculation of heating surface, and number of tubes. — Pan capacity by solid balance method,	
	¬ Calculation of vapor pipe& condensate pipe size capacity of injection pump.	
CO 3	Acquire knowledge of Capacity of cooling crystallizers, quantity of water required for cooling	
	¬ Capacity of centrifugal, Capacity of runoff pump. ¬ Capacity of melter and melt pump ¬	
	Capacity of final molasses weighing scale. — Capacity of superheated wash water system.	
CO 4	Acquire skill of Capacity of hopper, elevator and grader. — Capacity of hot and cold air	
	blower ¬ Capacity of sugar silo. ¬ Capacity of molasses storage tank, ¬ Capacity of sugar	
	storage godown efficiency.	
CO 5	Get knowledge about recent advances : Capacity calculation (Evaporation & Crystallization	
	house)	

DSC-ST 27 Chemical Control (Mill house control)

At the end of the course, students will be able to	
CO 1	Introduction:
	Technical definition — fundamental formula — Differential method for calculation of Brix
	%Bagasse, fiber %Bagasse, added water % fiberetc — Inferential method for calculation of
	mixed juice% cane, Bagasse %cane, added water %cane etc. ¬ Clarification of some concepts
	like java ratio, E.R.Q.V, B.F.C.W.etc
CO 2	Primary Extraction Secondary Extraction Mill Extraction, reduced mill extraction and
	whole mill extraction — Control parameters and norms for mill efficiency. distribution system
CO 3	Get knowledge about recent advances : Chemical Control (Mill house control) house)

DSC-ST 28: Chemical Control (Boiling house control)

At the end of the course, students will be able to	
CO 1	Introduction:
	Capacity of Evaporator ¬ Co-efficient of heat transmit ion, ¬ Quantity of water evaporated, ¬
	Properties of steam, ¬ Boiling point elevation. ¬ Heating surface of evaporator station. ¬
	Calculation of individual Brix ¬ Calculation of vapor piping. ¬ Steam requirement without
	vapor bleeding, steam requirement with vapor bleeding to juice heater and pan.
CO 2	Optimum S/V ratio of different pan. ¬ Pan capacity by massecuite %cane method. ¬
	Calculation of heating surface, and number of tubes. ¬ Pan capacity by solid balance method,
	¬ Calculation of vapor pipe& condensate pipe size capacity of injection pump.
CO 3	Acquire knowledge of Capacity of cooling crystallizers, quantity of water required for cooling
	¬ Capacity of centrifugal, Capacity of runoff pump. ¬ Capacity of melter and melt pump ¬
	Capacity of final molasses weighing scale. — Capacity of superheated wash water system.
CO 4	Acquire skill of Capacity of hopper, elevator and grader. — Capacity of hot and cold air
	blower ¬ Capacity of sugar silo. ¬ Capacity of molasses storage tank, ¬ Capacity of sugar
	storage godown efficiency.
CO 5	Get knowledge about recent advances: Capacity calculation (Evaporation &Crystallization
	house)

B.Sc. III Semester-V

DSC-ST 23: Process Instrumentation & control – I (Mill Section)

At the en	At the end of the course, students will be able to	
CO 1	Understand Theory Auto cane feed control system Introduction, Need &scope,	
	Classification, Functional elements, Calibration b) Imbibitions water flow rate	
	&temperature control system Introduction, Need &scope, Classification, Functional	
	elements, Calibration c) Central lubricant control system.	
CO 2	Introduction, Need &scope, Classification, Functional elements, Calibration d) Mill drive	
	section Thyristor Controlled Variable speed D.C. Drives, Thruster Converter Station (Digital	
	type)	
CO 3	Acquire knowledge (Boiler section) a) DCS for boiler control Introduction, need and scope,	
	classification, level measuring instruments, flow measuring instruments, flow diagram	
CO 4	Acquire skill Fluid statics- fly ash control system Introduction, need and scope, construction	
	and working, flow diagram. c) Turbine section DCS for turbine control, Introduction, need	
	and scope, Flow diagram, Construction and working, Advantages.	
CO 5	Get knowledge Process Instrumentation & control – I	

Subject: Process Instrumentation & Control - II

At the e	At the end of the course, students will be able to	
CO 1	Introduction: a) Auto pan control system. Introduction, Need &scope, Vacuum control system, Super	
	saturation, control system, Feed control system, Flow diagram, Working.	
CO 2	Auto molasses conditioning system Introduction, Need &scope, Brix control system, Temperature control system, Working	
CO 3	Acquire knowledge Brix &temperature control system for melter Introduction, Need & scope, Brix control system, Temperature control system, Working	
CO 4	Acquire skill of Auto feed control of centrifugal feed. Introduction, Need &scope, Flow control, advantages, Working e) Auto super heated wash system for centrifugal Introduction, Need &scope, Temperature &pressure control, advantages, Working.	
CO 5	Get knowledge about recent advances : Instrumentation & Control - II	

Subject: Advance Sugar Technology - I

At the end of the course, students will be able to	
CO 1	Introduction: a) Mill Efficiency Various factors affecting milling capacity and efficiency
CO 2	Mill control Auto cane feeding control system for uniform feed rate, Automatic imbibitions water flow and temperature control system, Central lubricant system,
CO 3	Acquire knowledge of New trends in clarification New trend in juice clarification-filtrate and syrup clarification, Advantages of above both processes d) S.R.T diameter.
CO 4	Acquire skill of Pressure feeding system TRPE.GRPF.UFR.
CO 5	Get knowledge about recent advances : Advance Sugar Technology - I

Advance Sugar Engineering - II

At the end of the course, students will be able to	
CO 1	Introduction:
	Capacity of Evaporator ¬ Co-efficient of heat transmit ion, ¬ Quantity of water evaporated, ¬
	Properties of steam, ¬ Boiling point elevation. ¬ Heating surface of evaporator station. ¬
	Calculation of individual Brix ¬ Calculation of vapor piping. ¬ Steam requirement without
	vapor bleeding, steam requirement with vapor bleeding to juice heater and pan.
CO 2	Optimum S/V ratio of different pan. ¬ Pan capacity by massecuite %cane method. ¬
	Calculation of heating surface, and number of tubes. — Pan capacity by solid balance method,
	¬ Calculation of vapor pipe& condensate pipe size capacity of injection pump.
CO 3	Acquire knowledge of Capacity of cooling crystallizers, quantity of water required for cooling
	¬ Capacity of centrifugal, Capacity of runoff pump. ¬ Capacity of melter and melt pump ¬
	Capacity of final molasses weighing scale. — Capacity of superheated wash water system.
CO 4	Acquire skill of Capacity of hopper, elevator and grader. — Capacity of hot and cold air
	blower ¬ Capacity of sugar silo. ¬ Capacity of molasses storage tank, ¬ Capacity of sugar
	storage godown efficiency.
CO 5	Get knowledge about recent advances : Capacity calculation (Evaporation & Crystallization
	house)

B.Sc. III (Sugar Technology) Sem. - VI Allied Sugar Manufacturing-I

At the end of the course, students will be able to	
CO 1	Introduction: a) Manufacturing of raw sugar Clarification process, Crystallization process, Centrifugal process b)Manufacturing of Jaggery &Jaggery powder
CO 2	Extraction &clarification of juice, Concentration of juice to rab, Drying & packing of Jaggery, Crystallization process of Jaggery powder, Curing, Drying and packing of Jaggery powder
CO 3	Get knowledge about recent advances : Allied Sugar Manufacturing-I

Allied Sugar Manufacturing-I

At the end of the course, students will be able to	
CO 1	Introduction:
	Manufacturing of raw sugar Clarification process, Crystallization process, Centrifugal process
CO 2	Manufacturing of Jaggery & Jaggery powder Extraction & clarification of juice, Concentration
	of juice to rab, Drying & packing of Jaggery, Crystallization process of Jaggery powder, Curing,
	Drying and packing of Jaggery powder
CO 3	Acquire knowledge of Manufacturing of refine sugar Types of refineries, Mingling and
	affination process, Clarification of refine melt Evaporation & crystallization, Specification of
	refine sugar b)Manufacturing of Khandsari sugar Specification of Khandsari sugar, Extraction
	&clarification of cane juice, Open pan boiling system, Purging, drying & packing system
CO 4	Get knowledge about recent advances : Allied Sugar Manufacturing-I

Allied Sugar Co – Products -II

At the en	At the end of the course, students will be able to	
CO 1	Introduction: Molasses Composition of molasses, storage of molasses, Quality of molasses –pre clarification of molasses, Molasses for production of alcohol process, Molasses for production of yeast process, Molasses for production of glycerin process,	
CO 2	Bagasse Composition of bagasse, storage of bagasse, Separation of pith from bagasse, Production of pulp and paper from bagasse process, Production of particle board and fiber board from bagasse process, Production of corrugated boards and boxes from bagasse process, Production of furfural from bagasse process, Production of xylitol from bagasse process, Production of plastic from lignin in bagasse process, Production of methane & product gas from bagasse process, Production of cattle feed from bagasse process, Other use of bagasse and bagasse ash, Generation of surplus power from bagasse	
CO 3	Acquire knowledge of Press mud (filter cake) Composition of filter cake, Use of filter cake as fertilizer process, Use of filter cake for production of cane wax process, Use of filter cake for production of bio-gas process, Use of filter cake as fuel process, Use of filter cake as cattle feed process.	
CO 4	Get knowledge about recent advances : Allied Sugar Co – Products -II	

Water Management in Co-generation Plant-I

At the end of the course, students will be able to	
CO 1	Introduction: Water Water properties & nature, Source of water, Uses of water &basic chemistry, Water related table
CO 2	Bagasse Composition of bagasse, storage of bagasse, Separation of pith from bagasse, Treatments Filtration, Clarification, Oxidation, Chlorination, De-aeration
CO 3	Acquire knowledge of Ion –exchange method Softner, De-alkalization, Demineralization application & limitation, Resin Membrane technology Ultra filtration, Nano filtration, Reverse osmosis, Electro-dialysis b) Boiler water treatments Feed water treatment, Condensate treatment, Boiler water treatment, Boiler blow down, Reasons of boiler failures, Boiler preventive maintenance, tubes internal chemical cleaning, Boiler feed & boiler water treatments, Boiler water limits, Carryover& priming in boiler.
CO 4	Get knowledge about recent advances : Water Management in Co-generation Plant-I

Water Management in Co-generation Plant-II

At the end of the course, students will be able to	
CO 1	Introduction:
	Cooling tower &cooling water treatments Need of cooling tower, Classification of cooling
	tower, Cooling tower maintenance, Cooling tower technical definition &calculations,
	Treatment of cooling water (physical &chemical), Problem in cooling water treatments b)
	Analytical methods &lab equipment's
CO 2	Analysis of Raw water, clarifier water, filter water, soft water, ultra filtration water,
	R.O.water, D.M.Water & mixed bed water i) Make up and recalculating water
CO 3	Acquire knowledge of Automation and Instrumentation for safety working at Water
	treatment, Effluent treatment, In plant control method, Environment acts and guide line c)
	Air pollution Source & control equipments.
CO 4	Get knowledge about recent advances : Water Management in Co-generation Plant-II

Alcohol Technology - I

At the end of the course, students will be able to	
CO 1	Introduction:
	Cane molasses Composition of molasses, gradation of molasses, storage of molasses, factors
	responsible for reducing the ratio (F/NF) of molasses, other use of molasses Definition of
	Molasses, Total reducing sugar, Fermentable/Unfermentable
CO 2	Wort, Brix, Specific gravity, Distillation, Industrial alcohol, Proof sprit, Strength of \sprit,
	Reflux, Vaporization, Saccharification, Scaling, Scrubber, Starch, sucrose, Rectification,
	Gelatinization, liquefaction, Re-boiler
CO 3	Acquire knowledge of Applied microbiology Definition of yeast, Taxonomy of yeast,
	Morphology of yeast, type of microorganism, Common strain of yeast used for alcoholic
	fermentation, Growth requirement of yeast, Yeast structure &function of cellular
	components, Metabolic pathway of yeast, Alcoholic pathway Glycolysis of EMP pathway.

CO 4	Propagation of pure yeast culture Isolation of yeast, preservation of yeast cell, Preservation of pure culture on agar salt, Preparation of slant, purpose of propagation, Fundamental of yeast growth (Aerobic &Anaerobic), Crab tree effect, Growth kinetics, Significance of growth curve, lag phase, log phase, stationary phase, death phase etc. Propagation stages aspartic condition
	condition
CO 5	Get knowledge about recent advances : Alcohol Technology – I

Alcohol Technology - II

At the end of the course, students will be able to	
CO 1	Introduction: Types of distillation process. Atmospheric distillation, MPR distillation, MPR benefits of vacuum distillation, RS, ENA production/Production of anhydrous alcohol, Dehydration with molecular sieve process & membrane process
CO 2	Distillation equipments Columns, design & construction, maintenance, Types of trays, Types of condenser, Types of Re-boilers
CO 3	Acquire knowledge of Effluent treatment system in Distillery, Quality of effluent, IS specification of effluent, Biological treatments, Aerobic treatments, Anaerobic treatments.
CO 4	Get knowledge about recent advances : Alcohol Technology – II